
 1

Performance of Static and Adaptive Service Discovery
Architectures in Response to Node Failures

Christopher Dabrowski
National Institute of

Standards and Technology
Gaithersburg, MD USA

1-301-975-3249

cdabrowski@nist.gov

Stephen Quirolgico
National Institute of

Standards and Technology
Gaithersburg, MD USA

1-301-975-8426

steveq@nist.gov

Kevin Mills
National Institute of

Standards and Technology
Gaithersburg, MD USA

1-301-975-3618

kmills@nist.gov

ABSTRACT
Future service-oriented computing systems will include
technology to discover and compose component services, and to
detect and adapt to failures. Already industry has developed some
competing service discovery architectures and protocols to
provide such capabilities. In this paper, we compare performance
of three such architectures (static two- and three-party and
adaptive two-/three-party) when subjected to node failures. We
use simulation to instantiate each architecture with behaviors
adapted from known service discovery protocols. We quantify the
functional effectiveness achieved for each instantiation under an
increasing rate of failures. We then decompose non-functional
periods into failure-detection latency and failure-recovery latency.
Our results suggest an adaptive architecture yields robustness
superior to a static three-party architecture and equivalent to, or
slightly better than, a static two-party architecture. While our
results find that an adaptive architecture entails higher overhead,
we argue that it should prove possible to achieve efficiency
similar to a static three-party architecture.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Dynamism and Performance

General Terms
Performance, Design, Reliability, Experimentation

Keywords
Service discovery and composition, failure detection and recovery

1. INTRODUCTION

Future service-oriented computing systems will require
technology to discover and compose component services, and to
detect and adapt to failures. Already industry has developed

several competing service discovery architectures and protocols
[e.g., 1-7] that include mechanisms service-oriented systems can
use to detect failures, and then to recover by finding and
composing remote components. In past work, we characterized
the robustness of selected service discovery architectures [8-12],
and devised and evaluated some adaptive algorithms to improve
performance [13-17]. In one previous paper [12], we investigated
the effectiveness and efficiency of selected discovery systems in
assisting service-oriented applications to detect failures in remote
services and to locate replacements. In that work, we modeled
selected discovery strategies and failure-recovery techniques in
combination with two major architectures that underlie present-
day service discovery systems: two-party, where clients and
services rendezvous directly, and three-party, where clients and
services rendezvous through a directory. For the two-party
architecture, we modeled behaviors adapted from Universal Plug-
and-Play (UPnP) [1]; for the three-party architecture, we
modeled behaviors from Jini™ Networking Technology (Jini) [2].
While we found the two-party architecture more effective and
efficient (than the three-party architecture) in detecting and
recovering from node failures, we also noted that the three-party
architecture provides better support for large-scale, service-
oriented systems, such as grid computing systems [18]. Based on
these previous findings, we suspect that some form of adaptive
architecture might yield the scalability of the three-party
architecture (when directories are available) and the reliability of
the two-party architecture (when directories are unavailable).

In this study, we expand our investigation of service discovery
systems to include an adaptive (two-/three-party) architecture,
which operates as a three-party architecture under normal
conditions but which adapts to a two-party architecture when
directories are lost to failure. For the adaptive architecture, we
model behaviors from the Service Location Protocol (SLP) [3].
Since discovery systems provide middleware to support service-
oriented applications, we layer a model of the same application on
top of all three architectures (and their underlying behaviors). The
application consists of a client that seeks to discover, compose,
and use a set of remote services. We restrict client behavior in a
form that allows us to specifically focus on fundamental
properties of the underlying service discovery systems. For
example, we ensure activation of failure-detection and recovery
processes by prohibiting clients from caching references to
discovered services. As much as possible, we also select client
behaviors that expose performance effects arising from
architectural differences, while limiting performance effects

This work is a contribution of the United States Government and not
subject to copyright. Certain commercial products are identified in this
paper to describe our study adequately. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor that the products identified are
necessarily the best available for the purpose.

Conference’04, Month 1–2, 2004, City, State, Country.

 2

arising from differences in underlying behaviors. To quantify
performance differences, we measure the functional effectiveness
of the simulated application, that is, the proportion of time that the
client can access an operational subset of remote services required
to perform the intended use case. To provide a clearer picture of
failure response, we decompose functional effectiveness to
measure failure-detection latency (i.e., the time required for a
client to recognize a remote service has failed) and failure-
recovery latency (i.e., the time required for the client to replace a
failed service). We also measure overhead as the number of
messages generated by the underlying protocol.

The remainder of the paper is organized as four sections. Section
2 introduces the essential concepts underlying service discovery
architectures and protocols, including behaviors and parameters
(as implemented in our models) associated with discovery, failure
detection, and recovery. Section 3 describes the design and
parameters used in our simulation experiments. Section 4 presents
our simulation results and discusses our fundamental findings and
associated causes. We conclude in Section 5.

2. DISCOVERY AND RECOVERY
Service discovery systems enable clients to discover and use
remote services over a network. Such systems also include
protocols and mechanisms that enable service-oriented
components to detect failures, and to respond by restoring
connections to remote components or by locating alternate
components.

2.1 Service Discovery
A number of different designs have been proposed for service
discovery systems. For example, Intel and Microsoft developed
UPnPTM to enable plug-and-play by service-oriented components,
while Sun Microsystems developed Jini as a general service
discovery system to operate atop JavaTM. In addition, Sun and
other companies also created the Service Location Protocol
(SLP), which has now been standardized by the Internet
Engineering Task Force (IETF). Our analysis of these and other
discovery systems revealed that most designs use one of two
underlying architectures: two-party or three-party. A two-party
architecture consists of two component types: a service manager
(SM) that provides information on behalf of managed services
(which we call service providers, or SPs) and a service user (SU)
that discovers these services on behalf of a client. A SM
maintains a set of service descriptions (SDs) that associate
specific service attributes with a particular SP. The three-party
architecture adds a third component type, a service cache
manager (SCM), which provides an independent directory to hold
a set of SDs provided by SMs. The SCM (directory) operates as
an intermediary, matching SDs acquired from SMs to queries
received from SUs.

The goal of service discovery is to allow a SU (supporting a
client) to discover SDs to satisfy specific requirements. In a two-
party architecture, service discovery by a SU may take place
either passively (i.e., the SU listens for multicast advertisements
of SDs by SMs) or actively (i.e., the SU seeks SDs through
multicast queries to SMs). In a three-party architecture, both SMs
and SUs first seek SCMs either passively (by listening for
multicast SCM announcements) or actively (by issuing multicast
queries for SCMs). SMs (on behalf of SPs) then register SDs with

all discovered SCMs and periodically renew those registrations,
while SUs query SCMs for SDs of interest. In this way, SMs and
SUs “rendezvous” through SCMs. A three-party architecture can
be instantiated with multiple SCMs (i.e., directory replicas) to
mitigate the effect of SCM failure and to improve scalability.

We model service discovery architectures as topologies of various
components, where each SM manages (i.e., is paired with) one SP
that implements a specific type of service, either a fast sensor, a
slow sensor, or an actuator. Our experiment topologies include
four SPs of each service type, whose roles are explained below in
Section 3. Figure 1 depicts a two-party architecture deployed in a
topology of 13 nodes: 12 SM-SP pairs and one SU. In our
topologies, each SU, SM-SP pair, and SCM resides on a distinct
node. We model the two-party architecture using UPnP behaviors,
as described elsewhere [1, 9, 10]. Figure 2 shows the three-party
architecture deployed in a topology of 13 to 16 nodes: 12 SM-SP
pairs, one SU, and up to three SCMs. We model the three-party
architecture using behaviors from the Jini specification, as
described elsewhere [2, 9, 10]. Our model of the adaptive (two-
/three-party) architecture maintains (when possible) the three-
party topology shown in Figure 2, but switches to the two-party
topology of Figure 1 when SCMs become unavailable. The
adaptive architecture is modeled using behavior from SLP, as
described in the relevant specification [3].

2.2 Failure-detection Techniques
To detect failure, components supported by discovery protocols
rely on a combination of two techniques: (1) monitoring periodic
transmissions from remote components and (2) responding to
exceptions signaled (when a message could not be sent
successfully) by an underlying (reliable) transport service.
Periodic message transmission and monitoring is a key failure-
detection strategy used in discovery systems. Components can
listen for such recurring messages, much as a heartbeat can be
monitored to assess patient health. For example, UPnP requires
SMs to periodically announce SD availability, and Jini and SLP
require SCMs to periodically announce themselves. Missing an
anticipated announcement might indicate failure of a SM or SCM.
Similarly, Jini and SLP require SMs to periodically renew service
registrations on each SCM. Missing a scheduled renewal indicates
to the SCM that the associated SM or SP has failed. At the
application level, clients may also maintain regular contact with
remote services. For example, a client may receive periodic,

Figure 1. Two-party service discovery architecture
with one service user and 12 service manager-

service provider pairs

HTTP/TCP and HTTP/UDP

UPnP Multicast Group

Unicast Links

Fast
Sensor

SM

Fast
Sensor
SM-SP

Slow
Sensor

SM

Slow
Sensor
SM-SP

Actuator
SM

Actuator
SM-SP

Service
User

HTTP/TCP and HTTP/UDP

UPnP Multicast Group

Unicast Links

Fast
Sensor

SM

Fast
Sensor
SM-SP

Slow
Sensor

SM

Slow
Sensor
SM-SP

Actuator
SM

Actuator
SM-SP

Service
User

 3

scheduled readings from a remote-sensor service. Missing a
scheduled interaction with a remote service might indicate a
component failure or a communications blockage.

For non-periodic transmissions, components typically use a
reliable transport service, which persistently resends
unacknowledged messages up to some bound, issuing a remote
exception (REX) if that bound is exceeded. For example, if a
client attempts to invoke a method offered by a remote service
that has failed, then the underlying transport service will
eventually return a REX to the client. This outcome occurs in a
three-party architecture when a SU attempts to query for a SD
from a failed SCM, or when a SM attempts to register a SD with a
failed SCM.

2.3 Failure-recovery Techniques
Once a failure is detected, various techniques can be used to
recover. Discovery systems generally support two recovery
techniques: soft-state and application-level persistence. The soft-
state technique relies on receiving and maintaining transient, or
soft, information about remote components. Here, remote
components issue periodic announcements that convey soft
information about the component state, which a receiver can
cache for a period of time, consistent with the expected
announcement rate. Each announcement may convey updated
state information that a receiver can use to overwrite previously
cached state information with information from newly arriving
announcements. If an announcement fails to arrive, a receiver
may discard the previously cached state, effectively eliminating
knowledge about the announcing component. If announcements
resume, a receiver may rediscover the remote component and
recover the latest component state. In our model, the client (and
supporting SU) uses a modified form of soft-state recovery, which
allows discarded components to be either rediscovered or
replaced. For example, in our (static) two-party model, SMs send
heartbeat messages to refresh SDs cached by a SU. If the SU fails
to receive these heartbeat messages, it will discard the SD as well
as knowledge about the related SM.

To effect recovery, SUs in our two-party model commence
periodic multicast queries to search for a new instance of a
required service. After reacquiring a matching SD, the SU ceases

sending queries until the need for a new SD arises again. In our
three-party model, loss of contact with a service may cause the
SU to query a SCM for a replacement. In addition, a SCM will
discard a SD after failing to receive heartbeat messages from SMs
to renew the cached SD. In our experiments, SUs (in a three-party
topology) poll SCMs at 180-s intervals to check the status of
previously discovered SMs. If the SCM response indicates that
the previously cached SD has been purged, then the SU assumes
the related service has failed. When services (i.e., SM-SP pairs)
recover from a failure, discovery procedures (in our models of
Jini and SLP behaviors) ensure that the SM rediscovers the SCM
within 120 s. SUs can then acquire the corresponding SD by
querying the SCM. Of course, SCMs can also fail.

In our model of a static three-party architecture, SCM startup
announcements ensure rediscovery of a restarted SCM by SMs
and SUs within 30 s after the SCM restarts. If all SCMs have
failed, a SU cannot recover a needed SD until at least one SCM
recovers. In our model of an adaptive architecture, losing contact
with all SCMs causes a SU or SM to issue periodic multicast
queries (at 120 s intervals) to search for a SCM. If no SCMs can
be found following the first attempt, then the SU changes its
strategy and also issues multicast queries for SMs until a needed
service is found. The SU continues to interact directly with any
discovered SMs while concurrently continuing to search for a
SCM. When a SCM is found, direct communication between the
SU and SMs ceases and the SU reverts to obtaining services
through the newly discovered SCM. In this way, an adaptive
architecture may operate with either two or three parties,
contingent upon SCM availability.

When failure of a remote component leads to a REX, discovery
systems generally expect application-level software to initiate
recovery, guided by an application-level persistence policy. This
policy may require that a component ignore the REX, retry the
operation for some period, or discard knowledge of the (failed)
remote component. Since our experiment simulates a real-time
control application, our client (and supporting SU) does not
persist after a REX, but instead discards knowledge of the failed
component; thus, relying on periodic announcements and soft-
state techniques to recover from the failure. Once discarded, no
interactions occur with a remote component until it is
rediscovered. We also employ this policy when SCM failure leads
to a REX in response to a SU query or SM registration (or
renewal) attempt.

3. EXPERIMENT DESCRIPTION
Previously [12], we conducted a simulation experiment to
compare the performance of static two- and three-party
architectures, and associated failure-detection and recovery
mechanisms. Here, we use the same experiment design, but
include a comparison of the static architectures against an
adaptive architecture (as described above in Section 2). We
simulated the architectures in various topologies, yielding the
eight configurations shown in Table 1. Each configuration
includes a single client (and supporting SU) and twelve SM-SP
pairs (four of each type: slow sensor, fast sensor, and actuator).
The configurations differ in terms of the number of SCMs
supported.

Each experiment repetition of a particular configuration proceeds
along similar lines. The client discovers and activates a set (one

Figure 2. Three-party service discovery architecture
with one service user, 12 service manager-service

provider pairs, and up to 3 service cache managers

Slow
Sensor

SM

Slow
Sensor

SM-SP

Service
User

Service Cache
Manager

(SCM)

Aggressive Discovery Multicast Group

Lazy Discovery Multicast Group

Actuator
SM

Actuator
SM-SP

Fast
Sensor

SM

Fast
Sensor

SM-SP

Unicast Links

Remote Method
Invocation

Optional SCMs

Slow
Sensor

SM

Slow
Sensor

SM-SP

Service
User

Service Cache
Manager

(SCM)

Aggressive Discovery Multicast Group

Lazy Discovery Multicast Group

Actuator
SM

Actuator
SM-SP

Fast
Sensor

SM

Fast
Sensor

SM-SP

Unicast Links

Remote Method
Invocation

Optional SCMs

 4

fast sensor, one slow sensor, and one actuator) of remote services
needed to carryout the intended use case. After activation by the
client, the fast sensor transmits a reading every 2 s and the slow
sensor transmits a reading every 30 s. The client invokes the
actuator upon receiving an appropriate combination of readings.
We simulate actuation attempts using a uniform distribution with
a mean of 60 s. When the client holds one SD for a SP of each
type (fast sensor, slow sensor, and actuator) and each of the
related SPs is operational, then the application is considered
functional. If the client lacks SDs for one or more SP type, or if
one or more of the SDs held by the client describes a SP that is
(unbeknownst to the client) not operational, then the application is
considered non-functional. We measure accumulated functional
time over the experiment duration, D, during which SM-SP pairs
and SCMs (if any) periodically fail and recover. Prior to
beginning interval D, we run the configuration until discovery
completes and the client first becomes functional. To focus
exclusively on failure-detection and recovery behavior, we do not
permit clients to cache backup services; thus, the client holds at
most one SD for each SP type at any time. In the static three-party
and adaptive architectures, some additional decisions are
necessary. Each SM registers its SD with each discovered SCM,
and then renews that registration every 60 s (for slow sensors and
actuators) or 300 s (for fast sensors). When a renewal is missed,
the SCM purges the associated SD. For each SD discovered
through a SCM, the client polls the SCM every 180 s to learn if
the SD has been purged. If the SD has been purged, the client
assumes that the related SM-SP pair has failed.

3.1 Failure Model
During interval D, each node containing a SM-SP pair (or SCM,
where applicable) fails randomly and independently, although at
least one SM-SP pair of each type always remains active in order
to provide the client an opportunity to regain a functional state.
Given a failure rate R (with R increasing from 0.1 to 0.9 in 0.1
increments) we can calculate a derived mean time-to-failure

() DR ⋅−= 1µ . We randomly select node-failure times from a
“stepped” normal distribution with three steps: a 0.15 probability
that a failure occurs before time ()µµ ⋅−= 2.0t , a 0.7 probability
that a failure occurs in the range []µµµµ ⋅+⋅−= 2.0,2.0t , and a
0.15 probability that a failure occurs in a range []µµµ ⋅⋅+= 2,2.0t .
The time of failure is distributed uniformly within each step.

When a node fails, the affected SM-SP or SCM becomes
unavailable for a time, chosen from one of three failure classes,

each having a different probability P of occurrence and an
associated duration. Short failures occur with 1.0=P for a fixed
period of 135 s; intermediate failures occur with 7.0=P for
duration selected uniformly on the interval [180 s, 300 s]; long
failures occur with 2.0=P for duration selected uniformly on the
interval [480 s, 600 s].

3.2 Metrics
We refer to the time during which a client is in a functional state
(i.e., has access to the necessary minimum set of operational SM-
SP pairs) as functional time. We define non-functional time, F ,
as the accumulated time over D during which a client is in a non-
functional state. We let () DFDF /−= denote a client’s
functional effectiveness.

A client may incur a delay before detecting entry to a non-
functional state. We refer to this delay as failure-detection
latency. After detecting a non-functional state, the client may
incur additional delay while restoring any lost SM-SP pairs. We
refer to this delay as failure-recovery latency. Periods of failure-
detection latency and failure-recovery latency can overlap when a
client loses more than one SM-SP pair.

We properly account for such overlapping periods in F . We
define two logical conditions, one of which can be used to
measure failure-detection latency and one of which can be used to
measure failure-recovery latency.

1. Service discard condition: This condition states that each

SD held by a SU must match a SD managed by a SM.
Violation of this condition occurs when the SM fails but the
SU still holds a SD provided by the SM (i.e., the information
about the service is inconsistent between the SU and the
defunct SM). When a violation of this condition occurs (i.e.,
the SM fails), failure-detection latency is accumulated up to
the time the SU detects that the SD has failed.

2. Service discovery condition: This condition states that a SD

managed by a SM should be known to a SU if the SU and
SM can communicate over the network, and the SD matches
the requirements of the SU. Violation of this condition
occurs if the SU detects that the SM has failed (thus the SU
knows that the information about the service is inconsistent).
When a violation of this condition occurs (i.e., the SU
detects the failed SM), failure-recovery latency is
accumulated up to the time the SU acquires a new SD
matching its needs.

4. RESULTS AND DISCUSSION
For each of the eight configurations in Table 1, we assigned D =
1800 s and executed multiple (typically 60) independent
experiment repetitions for each value of R. We conducted one set
of experiments (see Sections 4.1 and 4.2) where at least one SM-
SP pair remains available for each service type (so the client
always has the possibility to recover a set of necessary services).
To confirm our findings under different assumptions, we then ran
a second variant of the experiment (see Section 4.4) where all
SM-SP pairs may fail (so there can be times when the client has
no possibility to recover a set of necessary services). For each

SLP

Jini

UPnP

Protocol Basis

Three

Two
OneStatic Three-Party

Two

NoneAdaptive Two/Three-
Party

Three

One

NoneStatic Two-Party

Number of SCMsArchitectural Variant

SLP

Jini

UPnP

Protocol Basis

Three

Two
OneStatic Three-Party

Two

NoneAdaptive Two/Three-
Party

Three

One

NoneStatic Two-Party

Number of SCMsArchitectural Variant

Table 1. Eight configurations of service discovery
architecture and topology used in our experiments

 5

repetition, we recorded functional effectiveness (and its
components: failure-detection latency and failure-recovery
latency) and the total number of messages exchanged.

4.1 Functional Effectiveness
Figure 3 shows the average functional effectiveness of the static
two-party, static three-party, and adaptive architectures as R
increases, but where one SM-SP pair for each service type is
always available (implying that the system could be functional
for all of D). In examining Figures 3a-3c, recall that failure
detection occurs when the client misses an expected sensor
reading or receives a REX in response to an attempted actuation.
In the three-party architecture (whether static or adaptive), failure
detection may also occur when, upon polling available SCMs, the
client cannot find SDs matching the three SM-SP pairs currently
in use. To become functional again, the client must invoke
recovery mechanisms to regain or replace failed SM-SP pairs. In
the static three-party architecture, at least one SCM must be
operational for recovery to succeed. During periods when all
SCMs fail, the client is unable to recover needed services,
increasing non-functional time. In the adaptive architecture, the
client may switch to a two-party operation, searching for SM-SP
pairs directly.
Overall, the adaptive and static two-party architectures exhibited
high effectiveness, allowing the client to remain functional for as
much as 80% of D even as the failure rate reaches 80%
(360=µ s). The mean effectiveness of the static two-party
architecture across all failure rates was 0.901. The adaptive
architecture showed comparable or better effectiveness regardless
of the number of SCMs, achieving mean effectiveness of 0.909
with no SCMs, 0.899 with one SCM, 0.906 with two SCMs, and
0.913 with three SCMs. The static three-party architecture
increased in effectiveness with the number of SCMs, reaching
(Figure 3c) a rough parity (mean effectiveness of 0.907) with the
other architectures as the number of SCMs reached three. Adding
SCMs improved effectiveness by lowering the incidence of
concurrent failure of all SCMs.
The adaptive architecture required only one or two SCMs to
obtain effectiveness comparable to the static three-party
architecture with three SCMs. The adaptive architecture without
SCMs proved slightly more effective than the static two-party
architecture (mean effectiveness of 0.901). We attribute this
small difference to the underlying UPnP behavior (static two-
party architecture), which requires successful exchange of more
messages than the equivalent SLP behavior (adaptive
architecture) to transfer a SD from a SM to the client (more
details are provided elsewhere [3,9,10]).

4.2 Efficiency
In our simulations, message counts (Figure 4) revealed the static
two-party architecture to be significantly more efficient than any
configuration of the other architectures, because the two-party
configuration does not multicast queries to discover SCMs. The
adaptive architecture attempts to discover SCMs even when they
do not exist; thus, more messages were generated. When
attempting to discover SCMs, the SLP procedures (adaptive
architecture) required more messages per discovery attempt than

Figure 3. Functional effectiveness under increasing R where at
least one SM-SP of each type is operational (60 reps/point)

(a) Static Two-Party, Adaptive Two/Three-Party with Zero &
One SCM, and Static Three-Party with one SCM.

(b) Static Two-Party, Adaptive Two/Three-Party with Zero &
two SCMs, and Static Three-Party with two SCMs.

(c) Static Two-Party, Adaptive Two/Three-Party with Zero &
three SCMs, and Static Three-Party with three SCMs.

0.4

0.6

0.8

1

0 20 40 60 80

Failure Rate (%)

A
ve

ra
ge

 F
un

ct
io

na
l E

ffe
ct

iv
en

es
s

Static Two-Party

Adaptive Two/Three-Party with no SCMs

Adaptive Two/Three-Party Single-SCM

Static Three-Party Single-SCM

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

A
ve

ra
ge

 F
un

ct
io

na
l E

ffe
ct

iv
en

es
s

Static Two-Party

Adaptive Two/Three-Party with no SCMs

Adaptive Two/Three-Party Dual-SCM

Static Three-Party Dual-SCM

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

A
ve

ra
ge

 F
un

ct
io

na
l E

ffe
ct

iv
en

es
s

Static Two-Party

Adaptive Two/Three-Party with no SCMs

Adaptive Two/Three-Party with Three SCMs

Static Three-Party with Three SCMs

 6

the Jini procedures (three-party architecture); thus, for a given
number of SCMs one might expect our model of the adaptive
architecture to require more messages than our equivalent model
of a three-party architecture. This held true for one- and two-SCM
configurations; however, as the number of SCMs increased, Jini
discovery procedures tended to generate more messages because
(in Jini) SCMs attempt to discover each other, while in SLP
SCMs do not. This leads us to believe that the adaptive and static
three-party architectures would provide comparable efficiencies
when deployed with the same number of SCMs, provided that
both architectures adopt identical underlying behaviors for
discovery, registration, SD renewal, and update propagation.

Figure 4 also reveals that, for each configuration with SCMs, total
message count decreases as failure rate increases (that is, those
curves exhibit a negative slope). This occurs because, as SCMs
fail more frequently, the number of SD renewal messages and
SCM heartbeat messages decreases. Further, the rate of decline in
message counts is inversely related to the number of SCMs
employed, that is, the more SCMs in a configuration, the steeper
the negative slope. Similarly, SM-SP pairs also fail more
frequently, causing the number of queries for SCMs to decline.

In contrast, the static two-party architecture exhibits an increase
in the message count with an increasing failure rate. The increase
in message count occurred because, as the failure rate increased,
the client more frequently invoked recovery procedures after
detecting failed SM-SP pairs. Compare this with the result
obtained when the adaptive architecture is deployed without
SCMs. In this latter case, message count decreased with
increasing failure rate because SLP procedures still require SM-
SP pairs to query for SCMs.

4.3 Underlying Causes
To better understand differences in effectiveness among the
alternate architectures, we decomposed (Figures 5a-5c) non-
functional time to show the estimated proportion attributable to
failure-detection latency and to failure-recovery latency. Figure
5a shows that detection latency is the dominant (~90%)
component of non-functional time for the static two-party model.

Analysis of execution traces showed most failures were detected
through missed sensor readings (2 s for fast sensors and 30 s for
slow sensors) or REXs received in response to failed actuation
messages. Previously [12], we found we could reduce failure-
detection latency (and therefore non-functional time) associated
with violation of the service discard condition by increasing the
registration-renewal frequency for SMs (decreasing the interval
between heartbeats).

Figure 4. Average message counts under increasing R
where at least one SM-SP of each type is operational (60

reps/point)

0

1000

2000

3000

4000

5000

0 20 40 60 80

Failure Rate (%)

M
es

sa
ge

 C
ou

nt
s

Static Two-Party
Adaptive Two/Three-Party with no SCMs
Static Three-Party Single-SCM
Adaptive Two/Three-Party Single-SCM
Static Three-Party Dual-SCM
Adaptive Two/Three-Party Dual-SCM
Static Three-Party with Three SCMs
Adaptive Two/Three-Party with Three SCMs

(a) Static two-party architecture

(b) Static three-party architecture with 3 SCMs

Figure 5. Detection and recovery latencies of various
architectures and topologies as a proportion of non-

functional time (60 reps/point)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Pr
op

or
tio

n
of

 L
at

en
ci

es

Detection Latency
Recovery Latency
Non-Functional Time

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Pr
op

or
tio

n
of

 L
at

en
ci

es Detection Latency
Recovery Latency
Non-Functional Time

(c) Adaptive three-party architecture with 3
SCMs

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
Failure Rate (%)

Pr
op

or
tio

n
of

 L
at

en
ci

es Detection Latency
Recovery Latency
Non-Functional Time

 7

For the static three-party architecture, our data showed that the
incidence of concurrent failure of all SCMs increased steadily
with increasing failure rate, leading to correspondingly longer
periods of time during which the client is unable to find enough
SM-SP pairs (and thus remained in violation of the service
discovery condition). For the client to regain a functional state,
some SCM must first recover, accept SD registrations from
available SMs, and respond to queries for SDs from the client.
Lacking an ability to directly discover SMs, the client in the static
three-party architecture remains non-functional while awaiting
recovery of at least one SCM.

These effects are evident in Figure 5b, which shows the
proportion of recovery latency increased for the static three-party
architecture (with three SCMs) as the failure rate rose. This trend
is more marked as the number of SCMs decreases (not shown).

Finally, Figure 5c compares failure-detection latency to failure-
recovery latency for the adaptive architecture with three SCMs.
Here, the allocation of delay approximates that for the static two-
party architecture (see Figure 5a). After detecting a failure and
finding no available SCMs, the adaptive architecture adopts two-
party discovery procedures, which reduced the proportion of time
spent on failure-recovery latency; thus, failure-detection latency
again became the greater part of non-functional time.

4.4 Results for Experiment Variant
To confirm our findings, we varied the experiment to permit all
SM-SP pairs to fail, rather than to have at least one pair always
available for each service type. Figure 6 shows these results for
the same configurations as in Figure 3. Figures 6a-6c illustrate
that functional effectiveness for all architectural variants
decreased substantially above R = 60%, as the incidence of
concurrent SM-SP failures increased, resulting in extended
periods with no SM-SP pairs available for at least one of the
service types needed by the client. The curves in Figure 6 show
that overall functional effectiveness decreased (from Figure 3) for
all configurations due to increased non-functional time arising
from situations where all SM-SP pairs of a particular service type
became temporarily unavailable. Nevertheless, the comparative
ranking of the configurations remained consistent with the results
shown in Figure 3. The adaptive architecture with no SCMs again
outperformed the static two-party architecture, and the adaptive
model also exhibited higher effectiveness than the static three-
party model (for the same number of SCMs). Further, the mean
effectiveness across all failure rates of the adaptive model with
one and two SCMs (0.809 and 0.811 respectively) exceeded the
mean effectiveness of the static three-party model with three
SCMs (0.787). We note that, in this variant of our experiment, the
performance of the static three-party architecture is hindered both
by situations where all SCMs are unavailable and where all SM-
SP pairs of specific service types are unavailable.

5. CONCLUSIONS
This study compared performance of adaptive and static service
discovery architectures under conditions of increasing node
failure. The study found that an adaptive architecture exhibits
equivalent or better overall functional effectiveness when
compared against either a static two-party or three-party

(a) Static Two-Party, Adaptive Two/Three Party with Zero
and One SCM, and Static Three-Party with one SCM.

(b) Static Two-Party, Adaptive Two/Three Party with Zero
and two SCMs, and Static Three-Party with two SCMs.

Figure 6. Functional effectiveness under increasing R
where all SM-SP pairs of each type are allowed to fail

(60 reps/point)

(c) Static Two-Party, Adaptive Two/Three Party with Zero
and three SCMs, and Static Three-Party with three
SCMs.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Failure Rate (%)

A
ve

ra
ge

 F
un

ct
io

na
l E

ffe
ct

iv
en

es
s

Static Two-Party

Adaptive Two/Three-Party with no SCMs

Adaptive Two/Three-Party Single-SCM

Static Three-Party Single-SCM

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Failure Rate (%)

A
ve

ra
ge

 F
un

ct
io

na
l E

ffe
ct

iv
en

es
s

Static Two-Party

Adaptive Two/Three-Party with no SCMs

Adaptive Two/Three-Party Dual-SCM

Static Three-Party Dual-SCM

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Failure Rate (%)

A
ve

ra
ge

 F
un

ct
io

na
l E

ffe
ct

iv
en

es
s

Static Two-Party

Adaptive Two/Three-Party Polling no SCMs

Adaptive Two/Three-Party with Three SCMs

Static Three-Party with Three SCMs

 8

architecture (assuming an equivalent number of directory
replicas). These results also suggest that adaptive architectures
could achieve a level of efficiency comparable to an equivalent
static architecture, when configured with the same topology and
implementing the same behaviors for discovery, registration, and
renewal. Further, the results found that functional effectiveness of
an adaptive architecture configured with one or two directory
replicas approaches or exceeds the effectiveness of a static three-
party architecture configured with three directory replicas. This
means that, while the adaptive and static three-party architectures
can both provide independent directories to support service
discovery in large-scale systems, the adaptive architecture might
yield equivalent or better effectiveness with fewer directory
replicas. The adaptive architecture can thus potentially reduce the
overhead associated with managing redundant directories. Future
work is needed to investigate whether or not an adaptive
architecture can successfully employ two-party procedures across
a large-scale network.

6. ACKNOWLEDGMENTS
The work described benefits from financial support provided by
the National Institute of Standards and Technology (NIST), the
Defense Advanced Research Projects Agency (DARPA), and the
Advanced Research Development Agency (ARDA). In particular,
we acknowledge the support of Susan Zevin from NIST, Doug
Maughan and John Salasin from DARPA, and Greg Puffenbarger
from ARDA.

7. REFERENCES
[1] Universal Plug and Play Device Architecture, V. 1.0,

Microsoft, June 8, 2000.
[2] Arnold K., et al. The Jini Specification, V1.0 Addison-

Wesley 1999. Latest version is available from Sun.
[3] Guttman, E., Perkins, C., Veizades, J., and Day, M. Service

Location Protocol, V.2, Internet Engineering Task Force
(IETF), RFC 2608, June 1999.

[4] Salutation Architecture Specification, V. 2.0c, Salutation
Consortium, June 1, 1999.

[5] Specification of the Home Audio/Video Interoperability
(HAVi) Archiecture, V1.1, HAVi, Inc., May 15, 2001.

[6] Specification of the Bluetooth System, Core, Vol. 1, Version
1.1, the Bluetooth SIG, Inc., February 22, 2001, 1999.

[7] UDDI Version 3.0, Published Specification, Dated 19 July
2002 (available from http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3)

[8] Dabrowski C. and Mills K., "Analyzing Properties and
Behavior of Service Discovery Protocols using an
Architecture-based Approach," in the Proceedings of

Working Conference on Complex and Dynamic Systems
Architecture, DARPA-sponsored, December 2001.

[9] Dabrowski C., Mills K., and Elder, J. "Understanding
Consistency Maintenance in Service Discovery Architectures
during Communication Failure" in the Proceedings of the
3rd International Workshop on Software Performance,
ACM, July 2002, pp. 168-178.

[10] Dabrowski C., Mills K., and Elder, J. "Understanding
Consistency Maintenance in Service Discovery Architectures
in Response to Message Loss", in the Proceedings of the 4th
International Workshop on Active Middleware Services,
IEEE Computer Society, July 2002, pp. 51-60.

[11] Dabrowski C. and Mills K., "Understanding Self-healing in
Service Discovery Systems" in the Proceedings of the First
ACM SigSoft Workshop on Self-healing Systems (WOSS '02),
November 18-19, 2002, Charleston, South Carolina, ACM
Press, pp. 15-20.

[12] Dabrowski, C., Mills, K., and Rukhin, A. “Performance of
Service Discovery Architectures In Response to Node
Failure,” in the Proceedings of the International Conference
on Software Engineering Research and Practice (SERP’03),
CSREA Press June 23-26, 2003, pp. 95-101.

[13] Bowers K., Mills K., and Rose S. "Self-adaptive Leasing for
Jini" in the Proceedings of the IEEE PerCom 2003, Forth
Worth, Texas, March 23-26, 2003, pp. 539-542.

[14] Mills K. and Dabrowski C. "Adaptive Jitter Control for
UPnP M-Search", in the Proceedings of ICC 2003, May 11-
15, 2003 in Anchorage, Alaska.

[15] Rose S., Bowers K., Quirolgico S., and Mills K., "Improving
Failure Responsiveness in Jini Leasing", in the Proceedings
of the 3rd DARPA Information Survivability Conference and
Exposition (DISCEX-III 2003), IEEE Computer Society,
April, 2003, Vol. II, pp. 103-105.

[16] Bowers K., Mills K., Quirolgico S., and Rose S., "Self-
Managed Leasing for Distributed Systems", in the
Proceedings of the 1st Workshop on Algorithms and
Architectures for Self-Managing Systems, co-sponsored by
ACM SIGMETRICS, June 2003.

[17] Mills K., Rose S., Quirolgico S., Britton M., and Tan C. "An
Autonomic Failure-Detection Algorithm" in the Proceedings
of the 4th International Workshop on Software Performance
(WoSP 2004), January 14-16, 2004, San Francisco,
California, ACM Press, p. 79.

[18] Foster, I. et al. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration.
www.globus.org/research/papers/ogsa.pdf, Draft Document,
June 22, 2002

